|
Titolo |
Docente |
Periodo di erogazione |
Ore |
CFU |
|
Epigenetic in foods and humans: new perspectives |
Dott. Gabriele Carullo |
Giugno_Luglio 2026 |
8 |
1 |
|
Hydrogen in the Energy Transition: Technologies and Materials for Green Energy Production |
Dott.ssa Maria Pagliaro |
Aprile 2026 |
8 |
1 |
|
Design of functional materials for solar energy conversion devices |
Dott.ssa Carmen Coppola |
Giugno 2026 |
8 |
1 |
|
Materiali Critici per la Transizione Energetica- Critical Materials for Energy Transition |
Dott: Andrea Marchionni |
Giugno 2026 |
8 |
1 |
|
Materials and molecules for light-controlled delivery and activation of drugs" |
Prof. Marco Paolino |
Maggio 2026 |
8 |
1 |
|
NMR for Metabolomics |
Dott.ssa Veronica Ghini |
Febbraio 2026 |
8 |
1 |
Al termine del corso, gli studenti saranno in grado di:
Comprendere i meccanismi fondamentali della regolazione epigenetica (metilazione del DNA, modificazioni istoniche, RNA non codificanti).
Valutare criticamente il ruolo della disregolazione epigenetica in malattie umane rare e complesse.
Analizzare lo sviluppo e il potenziale terapeutico dei modulatori epigenetici.
Discutere l'impatto epigenetico di specifici componenti dietetici sull'espressione genica e sul rischio di malattia.
Integrare le conoscenze epigenetiche nella medicina personalizzata e nelle strategie nutrizionali.
Meccanismi epigenetici; metilazione del DNA, modificazioni degli istoni, RNA non codificanti; epigenetica nelle malattie umane e rare.
Lezione 2
Target epigenetici; approcci di chimica farmaceutica per la progettazione di modulatori epigenetici; sfide traslazionali.
Lezione 3
Epigenetica nel cancro; terapie epigenetiche; retinite pigmentosa e fibrosi polmonare idiopatica.
Lezione 4
Epigenetica nutrizionale; modulatori epigenetici di origine alimentare; malattie cardiovascolari; nutrizione di precisione.
Course Description
This course explores emerging concepts in epigenetics with a particular focus on the interplay between nutrition, epigenetic regulation, and human health. A central component of the course is the design and development of epigenetic modulators using pharmaceutical and medicinal chemistry approaches, aimed at targeting epigenetic mechanisms involved in human diseases. Special attention is given to the role of epigenetic dysregulation in rare diseases, cancer, retinal disorders such as retinitis pigmentosa, and idiopathic pulmonary fibrosis. In parallel, the course examines the epigenetic effects of food-derived bioactive compounds and dietary patterns in the prevention and progression of cardiovascular diseases. By integrating molecular biology, medicinal chemistry, translational medicine, and nutritional science, the course provides a multidisciplinary perspective on epigenetic modulation as both a therapeutic and preventive strategy.
Learning Objectives
By the end of the course, students will be able to:
Understand the fundamental mechanisms of epigenetic regulation (DNA methylation, histone modifiations, non-coding RNAs).
Critically evaluate the role of epigenetic dysregulation in rare and complex human diseases.
Analyze the development and therapeutic potential of epigenetic modulators.
Discuss the epigenetic impact of specific dietary components on gene expression and disease risk.
Integrate epigenetic knowledge into personalized medicine and nutritional strategies.
Lecture 1
Epigenetic mechanisms; DNA methylation, histone modifications, non-coding RNAs; epigenetics in human and rare diseases.
Lecture 2
Epigenetic targets; medicinal chemistry approaches for epigenetic modulator design; translational challenges.
Lecture 3
Epigenetics in cancer; epigenetic therapies; retinitis pigmentosa and idiopathic pulmonary fibrosis.
Lecture 4
Nutritional epigenetics; food-derived epigenetic modulators; cardiovascular diseases; precision nutrition.
Program and contents:
Materials and molecules for light-controlled delivery and activation of drugs.
1) Light as stimulus for the activation of materials and molecules in biological systems;
2) Photochemically-triggered drug delivery systems;
3) Light-activated prodrug strategies for site specific release of anticancer drugs;
4) Light-controlled supramolecular systems for pharmaceutical applications.
Idrogeno nella Transizione Energetica: Tecnologie e Materiali per la produzione di energia verde.
Parole chiave: idrogeno, vettore energetico, elettrolizzatori, biomasse, celle a combustibile, nanomateriali, elettrochimica.
Abstract: Il corso fornisce una visione completa del ruolo centrale dell’idrogeno come vettore energetico nella transizione verso sistemi energetici a basse emissioni di carbonio. Dopo un’introduzione sui vantaggi legati alle proprietà dell’idrogeno, i principali metodi di produzione, le applicazioni e sfide tecnologiche associate, il corso si focalizzerà sull’idrogeno verde. Saranno presentate le tecnologie più sostenibili per la sua produzione e conversione, tra cui l’elettrolisi dell’acqua, la conversione elettrochimica delle biomasse e la produzione di energia mediante celle a combustibile. Particolare attenzione sarà dedicata ai materiali nanostrutturati impiegati come elettrocatalizzatori nei dispositivi elettrochimici per la produzione e l’utilizzo dell’idrogeno. Il corso si concluderà con un approfondimento sulle tecniche di caratterizzazione elettrochimica, morfologica e strutturale, fondamentali per correlare le proprietà dei materiali alle prestazioni e alla durabilità dei sistemi a idrogeno. Il programma include sessioni di brainstorming strutturato basate sulla letteratura scientifica e la possibilità di una visita ai laboratori di ricerca del CNR di Firenze.
Come è strutturato il corso:
Il corso di 8 ore sarà tenuto online e verrà strutturato in 4 macro-argomenti (1-4). Per superare il corso sarà necessaria la frequenza di almeno 6 ore su 8.
- Introduzione generale sull’idrogeno
- Proprietà, vantaggi e limiti
- Classificazione dell’idrogeno (grigio, blu, verde…)
- Applicazioni principali
- Principali sfide tecnologiche
- Produzione Sostenibile di idrogeno verde: elettrolisi ed elettroreforming
- Elettrolisi alcalina dell’acqua
- Produzione di idrogeno da biomasse mediante elettroreforming
- Simultanea produzione di composti chimici derivati da biomasse
- Produzione di energia mediante celle a combustibile a idrogeno
- Funzionamento e tipologie di dispositivi
- Prestazioni, durabilità e sfide tecnologiche
- Analisi avanzata di materiali per le tecnologie a idrogeno
- Materiali usati come elettro-catalizzatori: stato dell’arte e sfide future
- Correlazione struttura–proprietà–prestazioni elettrochimiche
- Tecniche di caratterizzazione elettrochimiche
- Tecniche di caratterizzazione morfologica-strutturale
Hydrogen in the Energy Transition: Technologies and Materials for Green Energy Production
Keywords: hydrogen, energy carrier, electrolyzers, biomass, fuel cells, nanomaterials, electrochemistry.
Abstract:
The course provides a comprehensive overview of the central role of hydrogen as an energy carrier in the transition toward low-carbon energy systems. After an introduction to the advantages related to hydrogen’s properties, the main production methods, applications, and associated technological challenges, the course will focus on green hydrogen. The most sustainable technologies for its production and conversion will be presented, including water electrolysis, electrochemical conversion of biomass, and energy production through fuel cells. Particular attention will be devoted to nanostructured materials used as electrocatalysts in electrochemical devices for hydrogen production and utilization. The course will conclude with an in-depth discussion of electrochemical, morphological, and structural characterization techniques, which are essential for correlating material properties with the performance and durability of hydrogen systems. The program includes structured brainstorming sessions based on scientific literature and the possibility of a visit to the research laboratories of the CNR in Florence.
Course Structure:
The 8-hour course will be held online and will be organized into four main topics (1–4). To pass the course, attendance of at least 6 out of 8 hours is required.
1. General introduction to hydrogen
a. Properties, advantages, and limitations
b. Classification of hydrogen (gray, blue, green, etc.)
c. Main applications
d. Key technological challenges
2. Sustainable production of green hydrogen: electrolysis and electroreforming
a. Alkaline water electrolysis
b. Hydrogen production from biomass via electroreforming
c. Simultaneous production of biomass-derived chemical compounds
3. Energy production using hydrogen fuel cells
a. Operating principles and types of devices
b. Performance, durability, and technological challenges
4. Advanced analysis of materials for hydrogen technologies
a. Materials used as electrocatalysts: state of the art and future challenges
b. Structure–property–electrochemical performance correlations
c. Electrochemical characterization techniques
d. Morphological and structural characterization techniques
Module 1 (2-3 h)
- Introduction to Metabolomics
- Metabolomics workflow
- 1H NMR experiments: 1H NOESY; 1H CPMG; 1H diffusion-edited. 2D J-RES; 2D TOCSY
- Heteronuclear experiments 13C NMR: 13C-1H HSQC; 13C-1H HSQC-TOCSY
- Spectral processing
Module 2 (2-3 h)
- Metabolite assignment
- Spectral databases
- Fingerprinting and Profiling
- Pathway analysis
- Preanalytical SOPs
Module 3 (2-3 h)
- Application of metabolomics in drug discovery
- Examples of metabolic phenotyping in biofluids
- Examples of drug’s induced metabolic effects in cells
This short course aims to provide a general overview of non-canonical nucleic acids structures, including G-quadruplexes and i-motifs. Besides the canonical double helix of DNA, eukaryotic and prokaryotic cells exhibit a relatively large number of genomic segments that fold into non-canonical secondary structures and are involved in key regulatory processes relevant to cell survival and replication.
In recent years, these structures have attracted much attention for their functional implications, leading to the development of targeted small molecule modulators with pharmacological relevance.
The course will address the following topics:
-overview of non-canonical DNA structures.
-overview and application of bioinformatics tools non-canonical sequence identification, topology prediction, and 3D building and visualization (PhD students can install key software in their laptop and participate interactively in the lecture).
-biophysical methods for the study of non-canonical DNA structures.
-case studies on DNA G-quadruplexes.
Based on its content, the course is aimed at a wide audience including chemists, biologists, and physicists.
Course duration: 8 hours
Course dates: in June/July 2026, dates to be decided with the teacher.
Attendance type: hybrid (face2face or by remote access https://unisi.webex.com/meet/mattia.mori)
Registration: Ph.D students interested in the course “DNA beyond the double helix” are kindly requested to contact the teacher via email at mattia.mori@unisi.it
Innovative Dosage Forms for the Delivery of Bioactive Molecules
Course schedule:
4, 11,18, 25 November 2025 -----10.00-12.00