Didattica / Classes 2025-2026

Programmazione didattica 2026

Titolo

Docente

Periodo di erogazione

Ore

CFU

Epigenetic in foods and humans: new perspectives

Dott. Gabriele Carullo

Giugno_Luglio 2026

8

1

Hydrogen in the Energy Transition: Technologies and Materials for Green Energy Production

Dott.ssa Maria Pagliaro

Aprile 2026

8

1

Design of functional materials for solar energy conversion devices

Dott.ssa Carmen Coppola

Giugno 2026

8

1

Materiali Critici per la Transizione Energetica- Critical Materials for Energy Transition

Dott: Andrea Marchionni

Giugno 2026

8

1

Materials and molecules for light-controlled delivery and activation of drugs"

Prof. Marco Paolino

Maggio 2026

8

1

NMR for Metabolomics

Dott.ssa Veronica Ghini

Febbraio 2026

8

1

 

 

"Epigenetic in foods and humans: new perspectives" - Dr Gabriele Carullo - June/July 2026
DESCRIZIONE DEL CORSO
Questo corso esplora i concetti emergenti dell'epigenetica, con particolare attenzione all'interazione tra nutrizione, regolazione epigenetica e salute umana. Una componente centrale del corso è la progettazione e lo sviluppo di modulatori epigenetici utilizzando approcci di chimica farmaceutica e farmaceutica, volti a colpire i meccanismi epigenetici coinvolti nelle malattie umane. Particolare attenzione è rivolta al ruolo della disregolazione epigenetica nelle malattie rare, nel cancro, nei disturbi della retina come la retinite pigmentosa e la fibrosi polmonare idiopatica. Parallelamente, il corso esamina gli effetti epigenetici dei composti bioattivi di origine alimentare e dei modelli dietetici nella prevenzione e nella progressione delle malattie cardiovascolari. Integrando biologia molecolare, chimica farmaceutica, medicina traslazionale e scienze della nutrizione, il corso offre una prospettiva multidisciplinare sulla modulazione epigenetica come strategia sia terapeutica che preventiva.
Obiettivi di apprendimento
Al termine del corso, gli studenti saranno in grado di:
Comprendere i meccanismi fondamentali della regolazione epigenetica (metilazione del DNA, modificazioni istoniche, RNA non codificanti).
Valutare criticamente il ruolo della disregolazione epigenetica in malattie umane rare e complesse.
Analizzare lo sviluppo e il potenziale terapeutico dei modulatori epigenetici.
Discutere l'impatto epigenetico di specifici componenti dietetici sull'espressione genica e sul rischio di malattia.
Integrare le conoscenze epigenetiche nella medicina personalizzata e nelle strategie nutrizionali.
 
Lezione 1
Meccanismi epigenetici; metilazione del DNA, modificazioni degli istoni, RNA non codificanti; epigenetica nelle malattie umane e rare.
Lezione 2
Target epigenetici; approcci di chimica farmaceutica per la progettazione di modulatori epigenetici; sfide traslazionali.
Lezione 3
Epigenetica nel cancro; terapie epigenetiche; retinite pigmentosa e fibrosi polmonare idiopatica.
Lezione 4
Epigenetica nutrizionale; modulatori epigenetici di origine alimentare; malattie cardiovascolari; nutrizione di precisione.
 

Course Description

This course explores emerging concepts in epigenetics with a particular focus on the interplay between nutrition, epigenetic regulation, and human health. A central component of the course is the design and development of epigenetic modulators using pharmaceutical and medicinal chemistry approaches, aimed at targeting epigenetic mechanisms involved in human diseases. Special attention is given to the role of epigenetic dysregulation in rare diseases, cancer, retinal disorders such as retinitis pigmentosa, and idiopathic pulmonary fibrosis. In parallel, the course examines the epigenetic effects of food-derived bioactive compounds and dietary patterns in the prevention and progression of cardiovascular diseases. By integrating molecular biology, medicinal chemistry, translational medicine, and nutritional science, the course provides a multidisciplinary perspective on epigenetic modulation as both a therapeutic and preventive strategy.

Learning Objectives

By the end of the course, students will be able to:

Understand the fundamental mechanisms of epigenetic regulation (DNA methylation, histone modifiations, non-coding RNAs).

Critically evaluate the role of epigenetic dysregulation in rare and complex human diseases.

Analyze the development and therapeutic potential of epigenetic modulators.

Discuss the epigenetic impact of specific dietary components on gene expression and disease risk.

Integrate epigenetic knowledge into personalized medicine and nutritional strategies.

 

Lecture 1

Epigenetic mechanisms; DNA methylation, histone modifications, non-coding RNAs; epigenetics in human and rare diseases.

Lecture 2

Epigenetic targets; medicinal chemistry approaches for epigenetic modulator design; translational challenges.

Lecture 3

Epigenetics in cancer; epigenetic therapies; retinitis pigmentosa and idiopathic pulmonary fibrosis.

Lecture 4

Nutritional epigenetics; food-derived epigenetic modulators; cardiovascular diseases; precision nutrition.

 
"Design of functional materials for solar energy conversion devices" - Dr Carmen Coppola - June 2026
The research and development of functional materials for efficient and stable solar energy
conversion devices is essential for the transition to renewable energy. This process involves a
multidisciplinary approach where molecular design, data-driven methods, synthesis,
characterization, and device engineering must work together, implying the integration of
several expertise. In this context, this course aims to introduce how computational chemistry
and data-driven methods act as the third and fourth paradigms of material science research,
respectively, alongside theory and experiments. In particular, it will highlight how state-of-theart
Density Functional Theory (DFT) methods complemented by machine learning (ML)
techniques enable the rational design of functional materials for solar energy conversion
devices, accelerating the screening of large chemical spaces, providing structure-property
relationships, and supporting the transition from trial-and-error procedures to predictive
material design. To this end, this course will provide a basic understanding of photovoltaic
technologies, with a focus on innovative photovoltaics, such as perovskite solar cells (PSCs)
and dye-sensitized solar cells (DSSCs), where functional materials play a crucial role. Hence,
it will illustrate case studies where DFT methods and ML effectively guided, and in some cases
accelerated, the development of new functional materials for the aforementioned technologies
"Materiali Critici per la Transizione Energetica- Critical Materials for Energy Transition" - Dr Andrea Marchionni - June 2026
Il corso vuole presentare la problematica di sostenibilità dei materiali utilizzati nella transizione energetica partendo dalle definizioni della Commissione Europea e la situazione geopolitica. Verranno trattati i temi legati alla circolarità del mercato delle risorse, con particolare riferimento all’approccio 3R (Reduce, Reuse, Recycle), e alla valutazione della sostenibilità di processi (LCA) sia da un puto di vista ambientale che economico e sociale. Saranno presentate le problematiche specifiche dei principali materiali critici utilizzati in batterie al litio, magneti permanenti ed elettrocatalisi, ritenuti essenziali per la transizione energetica, con esempi di applicazione delle 3R nei tre settori. Come prova di comprensione delle tematiche del corso, sarà discusso un caso studio a scelta degli studenti basato con un approfondimento della letteratura scientifica e brevettuale. Infine, sarà possibile una visita guidata ai laboratori dell’area di ricerca del CNR in cui sono portati avanti studi su metodi di riciclo delle batterie al litio.
Parole chiave: Economia circolare, Materiali critici, Transizione energetica, LCA, Riciclo
 
Obiettivi Formativi:
•Comprendere il concetto di materiali critici e la loro rilevanza strategica.
•Analizzare supply chain, rischi geopolitici e politiche internazionali.
•Approfondire proprietà, applicazioni e tecnologie di estrazione/riciclo.
•Valutare impatti ambientali e strategie di sostenibilità.
•Stimolare la ricerca e l’innovazione nel settore.
 
Il Programma dettagliato delle lezioni nell’allegato

 

 
The course aims to present the sustainability challenges associated with the materials used in the energy transition, starting from the definitions provided by the European Commission and the current geopolitical context. The topics will include the circularity of the resource market, with particular focus on the 3R approach (Reduce, Reuse, Recycle), and the evaluation of process sustainability (LCA) from environmental, economic, and social perspectives.
The course will also address the specific issues related to the main critical materials used in lithium batteries, permanent magnets, and electrocatalysis—considered essential for enabling the energy transition—along with examples of how the 3R approach is applied in these three sectors.
As an assessment of the students’ understanding of the course topics, each student will select and discuss a case study based on an in-depth review of scientific and patent literature. Finally, participants will have the opportunity to join a guided tour of the CNR research laboratories where studies on lithium-battery recycling methods are carried out.
Keywords: Circular Economy, Critical Materials, Energy Transition, LCA, Recycling
 
Learning Objectives
•Understand the concept of critical materials and their strategic relevance.
•Analyze supply chains, geopolitical risks, and international policies.
•Deepen knowledge of the properties, applications, and extraction/recycling technologies.
•Evaluate environmental impacts and sustainability strategies.
•Encourage research and innovation in the sector.
 
Detailed Program in the attached file
Materials and molecules for light-controlled delivery and activation of drugs" - Prof. Marco Paolino - May 2026

Program and contents:

 

 Materials and molecules for light-controlled delivery and activation of drugs.

 

1) Light as stimulus for the activation of materials and molecules in biological systems;

2) Photochemically-triggered drug delivery systems;

3) Light-activated prodrug strategies for site specific release of anticancer drugs;

4) Light-controlled supramolecular systems for pharmaceutical applications.

"Hydrogen in the Energy Transition: Technologies and Materials for Green Energy Production" - Dr Maria Pagliaro - April 2026

 Idrogeno nella Transizione Energetica: Tecnologie e Materiali per la produzione di energia verde.

Parole chiave: idrogeno, vettore energetico, elettrolizzatori, biomasse, celle a combustibile, nanomateriali, elettrochimica.

Abstract: Il corso fornisce una visione completa del ruolo centrale dell’idrogeno come vettore energetico nella transizione verso sistemi energetici a basse emissioni di carbonio. Dopo un’introduzione sui vantaggi legati alle proprietà dell’idrogeno, i principali metodi di produzione, le applicazioni e sfide tecnologiche associate, il corso si focalizzerà sull’idrogeno verde. Saranno presentate le tecnologie più sostenibili per la sua produzione e conversione, tra cui l’elettrolisi dell’acqua, la conversione elettrochimica delle biomasse e la produzione di energia mediante celle a combustibile. Particolare attenzione sarà dedicata ai materiali nanostrutturati impiegati come elettrocatalizzatori nei dispositivi elettrochimici per la produzione e l’utilizzo dell’idrogeno. Il corso si concluderà con un approfondimento sulle tecniche di caratterizzazione elettrochimica, morfologica e strutturale, fondamentali per correlare le proprietà dei materiali alle prestazioni e alla durabilità dei sistemi a idrogeno. Il programma include sessioni di brainstorming strutturato basate sulla letteratura scientifica e la possibilità di una visita ai laboratori di ricerca del CNR di Firenze.

Come è strutturato il corso:

Il corso di 8 ore sarà tenuto online e verrà strutturato in 4 macro-argomenti (1-4). Per superare il corso sarà necessaria la frequenza di almeno 6 ore su 8.

  1. Introduzione generale sull’idrogeno
    1. Proprietà, vantaggi e limiti
    2. Classificazione dell’idrogeno (grigio, blu, verde…)
    3. Applicazioni principali
    4. Principali sfide tecnologiche
  2. Produzione Sostenibile di idrogeno verde: elettrolisi ed elettroreforming
    1. Elettrolisi alcalina dell’acqua
    2. Produzione di idrogeno da biomasse mediante elettroreforming
    3. Simultanea produzione di composti chimici derivati da biomasse
  3. Produzione di energia mediante celle a combustibile a idrogeno
    1. Funzionamento e tipologie di dispositivi
    2. Prestazioni, durabilità e sfide tecnologiche
  4. Analisi avanzata di materiali per le tecnologie a idrogeno
    1. Materiali usati come elettro-catalizzatori: stato dell’arte e sfide future
    2. Correlazione struttura–proprietà–prestazioni elettrochimiche
    3. Tecniche di caratterizzazione elettrochimiche
    4. Tecniche di caratterizzazione morfologica-strutturale

 

 

Hydrogen in the Energy Transition: Technologies and Materials for Green Energy Production

Keywords: hydrogen, energy carrier, electrolyzers, biomass, fuel cells, nanomaterials, electrochemistry.

Abstract:
The course provides a comprehensive overview of the central role of hydrogen as an energy carrier in the transition toward low-carbon energy systems. After an introduction to the advantages related to hydrogen’s properties, the main production methods, applications, and associated technological challenges, the course will focus on green hydrogen. The most sustainable technologies for its production and conversion will be presented, including water electrolysis, electrochemical conversion of biomass, and energy production through fuel cells. Particular attention will be devoted to nanostructured materials used as electrocatalysts in electrochemical devices for hydrogen production and utilization. The course will conclude with an in-depth discussion of electrochemical, morphological, and structural characterization techniques, which are essential for correlating material properties with the performance and durability of hydrogen systems. The program includes structured brainstorming sessions based on scientific literature and the possibility of a visit to the research laboratories of the CNR in Florence.

Course Structure:

The 8-hour course will be held online and will be organized into four main topics (1–4). To pass the course, attendance of at least 6 out of 8 hours is required.

1. General introduction to hydrogen

a. Properties, advantages, and limitations

b. Classification of hydrogen (gray, blue, green, etc.)

c. Main applications

d. Key technological challenges

2. Sustainable production of green hydrogen: electrolysis and electroreforming

a. Alkaline water electrolysis

b. Hydrogen production from biomass via electroreforming

c. Simultaneous production of biomass-derived chemical compounds

3. Energy production using hydrogen fuel cells

a. Operating principles and types of devices

b. Performance, durability, and technological challenges

4. Advanced analysis of materials for hydrogen technologies

a. Materials used as electrocatalysts: state of the art and future challenges

b. Structure–property–electrochemical performance correlations

c. Electrochemical characterization techniques

d. Morphological and structural characterization techniques

 

 

"NMR for Metabolomics" - Dr Veronica Ghini - February 2026

Module 1 (2-3 h)

  • Introduction to Metabolomics
  • Metabolomics workflow
  • 1H NMR experiments: 1H NOESY; 1H CPMG; 1H diffusion-edited. 2D J-RES; 2D TOCSY
  • Heteronuclear experiments 13C NMR: 13C-1H HSQC; 13C-1H HSQC-TOCSY
  • Spectral processing

Module 2 (2-3 h)

  • Metabolite assignment
  • Spectral databases
  • Fingerprinting and Profiling
  • Pathway analysis
  • Preanalytical SOPs

Module 3 (2-3 h)

  • Application of metabolomics in drug discovery
  • Examples of metabolic phenotyping in biofluids
  • Examples of drug’s induced metabolic effects in cells

 

"DNA beyond the double helix" - Prof. Mattia Mori

This short course aims to provide a general overview of non-canonical nucleic acids structures, including G-quadruplexes and i-motifs. Besides the canonical double helix of DNA, eukaryotic and prokaryotic cells exhibit a relatively large number of genomic segments that fold into non-canonical secondary structures and are involved in key regulatory processes relevant to cell survival and replication.

In recent years, these structures have attracted much attention for their functional implications, leading to the development of targeted small molecule modulators with pharmacological relevance.

The course will address the following topics:

-overview of non-canonical DNA structures.

-overview and application of bioinformatics tools non-canonical sequence identification, topology prediction, and 3D building and visualization (PhD students can install key software in their laptop and participate interactively in the lecture).

-biophysical methods for the study of non-canonical DNA structures.

-case studies on DNA G-quadruplexes.

 

Based on its content, the course is aimed at a wide audience including chemists, biologists, and physicists.

 

Course duration: 8 hours

 

Course dates: in June/July 2026, dates to be decided with the teacher.

 

Attendance type: hybrid (face2face or by remote access https://unisi.webex.com/meet/mattia.mori)

 

Registration: Ph.D students interested in the course “DNA beyond the double helix” are kindly requested to contact the teacher via email at mattia.mori@unisi.it

"Go with the Flow: fundamentals and applications of Flow Chemistry" - Dr. Francesco Brandi, Dr. Matteo Bartolini
Go with the Flow: fundamentals and applications of Flow Chemistry
 
Total of 8h (4 lectures of 2h each) - online webinar
 
Abstract:
Sometimes you just need to go with the flow. Over the course of the last decades, flow chemistry has emerged not only as a powerful reactor configuration, but also as a chemical escamotage to steer the reaction course. Therefore, the objective of this course is dual: firstly, delve into the chemical-physical and engineering fundamental of Flow chemistry, providing the attenders of a comprehensive set of information of the topic. Secondarily, the course will provide the attendees of an equally comprehensive practical example of application of Flow chemistry, namely: flow chemistry for sustainable and green chemistry, flow chemistry for pharmaceuticals and fine chemical production, photo-flow chemistry, and electro-flow chemistry.
 
Evaluation: 
The course attendees will be evaluated with a flash oral presentation related to one of the topics.
 
Course schedule:
21/11/2025 (11.00-13.00) - Flow chemistry: fundamental 
28/11/2025 (11.00-13.00) (to be confirmed) - Flow chemistry for green and sustainable chemistry 
05/12/2025 (11.00-13.00) (to be confirmed) - Photochemistry in flow 
12/12/2025 (11.00-13.00) (to be confirmed) - Electrosynthesis in flow 
 
For further information please contact the lecturers:
 
Dr. Francesco Brandi - francesco.brandi@cnr.it
Dr. Matteo Bartolini - matteo.bartolini@cnr.it
"Forme di dosaggio innovative per la veicolazione di molecole bioattive" - Dr Simone Pepi

Innovative Dosage Forms for the Delivery of Bioactive Molecules

Course schedule:

4, 11,18, 25 November 2025 -----10.00-12.00